Researchers reduce bias in AI models while preserving or improving accuracy
A new technique identifies and removes the training examples that contribute most to a machine-learning model’s failures.
A new technique identifies and removes the training examples that contribute most to a machine-learning model’s failures.
Research from the MIT Center for Constructive Communication finds this effect occurs even when reward models are trained on factual data.
Using LLMs to convert machine-learning explanations into readable narratives could help users make better decisions about when to trust a model.
Researchers develop “ContextCite,” an innovative method to track AI’s source attribution and detect potential misinformation.
MIT engineers developed the largest open-source dataset of car designs, including their aerodynamics, that could speed design of eco-friendly cars and electric vehicles.
This new device uses light to perform the key operations of a deep neural network on a chip, opening the door to high-speed processors that can learn in real-time.
Associate Professor Catherine D’Ignazio thinks carefully about how we acquire and display data — and why we lack it for many things.
The MIT Advanced Vehicle Technology Consortium provides data-driven insights into driver behavior, along with trust in AI and advance vehicle technology.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI’s potential for creating robotics training data.
MIT and IBM researchers are creating linkage mechanisms to innovate human-AI kinematic engineering.