A faster, better way to train general-purpose robots
Inspired by large language models, researchers develop a training technique that pools diverse data to teach robots new skills.
Inspired by large language models, researchers develop a training technique that pools diverse data to teach robots new skills.
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
A new method can train a neural network to sort corrupted data while anticipating next steps. It can make flexible plans for robots, generate high-quality video, and help AI agents navigate digital environments.
Associate Professor Julian Shun develops high-performance algorithms and frameworks for large-scale graph processing.
MIT CSAIL researchers created an AI-powered method for low-discrepancy sampling, which uniformly distributes data points to boost simulation accuracy.
New dataset of “illusory” faces reveals differences between human and algorithmic face detection, links to animal face recognition, and a formula predicting where people most often perceive faces.
“Co-LLM” algorithm helps a general-purpose AI model collaborate with an expert large language model by combining the best parts of both answers, leading to more factual responses.
“ScribblePrompt” is an interactive AI framework that can efficiently highlight anatomical structures across different medical scans, assisting medical workers to delineate regions of interest and abnormalities.
A new algorithm solves complicated partial differential equations by breaking them down into simpler problems, potentially guiding computer graphics and geometry processing.
AI agents could soon become indistinguishable from humans online. Could “personhood credentials” protect people against digital imposters?