MIT-IBM Watson AI Lab
MIT-IBM Watson AI Lab

Computer vision system marries image recognition and generation

MAGE merges the two key tasks of image generation and recognition, typically trained separately, into a single system.

Scaling audio-visual learning without labels

A new multimodal technique blends major self-supervised learning methods to learn more similarly to humans.

New tool helps people choose the right method for evaluating AI models

Selecting the right method gives users a more accurate picture of how their model is behaving, so they are better equipped to correctly interpret its predictions.

AI system can generate novel proteins that meet structural design targets

These tunable proteins could be used to create new materials with specific mechanical properties, like toughness or flexibility.

A four-legged robotic system for playing soccer on various terrains

“DribbleBot” can maneuver a soccer ball on landscapes such as sand, gravel, mud, and snow, using reinforcement learning to adapt to varying ball dynamics.