Can robots learn from machine dreams?
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI’s potential for creating robotics training data.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI’s potential for creating robotics training data.
A new method can train a neural network to sort corrupted data while anticipating next steps. It can make flexible plans for robots, generate high-quality video, and help AI agents navigate digital environments.
New dataset of “illusory” faces reveals differences between human and algorithmic face detection, links to animal face recognition, and a formula predicting where people most often perceive faces.
A new method called Clio enables robots to quickly map a scene and identify the items they need to complete a given set of tasks.
New algorithm helps robots practice skills like sweeping and placing objects, potentially helping them improve at important tasks in houses, hospitals, and factories.
CSAIL researchers introduce a novel approach allowing robots to be trained in simulations of scanned home environments, paving the way for customized household automation accessible to anyone.
MAIA is a multimodal agent that can iteratively design experiments to better understand various components of AI systems.
This technique could lead to safer autonomous vehicles, more efficient AR/VR headsets, or faster warehouse robots.
LLMs trained primarily on text can generate complex visual concepts through code with self-correction. Researchers used these illustrations to train an image-free computer vision system to recognize real photos.
The method uses language-based inputs instead of costly visual data to direct a robot through a multistep navigation task.