AI accelerates problem-solving in complex scenarios
A new, data-driven approach could lead to better solutions for tricky optimization problems like global package routing or power grid operation.
A new, data-driven approach could lead to better solutions for tricky optimization problems like global package routing or power grid operation.
Rodney Brooks, co-founder of iRobot, kicks off an MIT symposium on the promise and potential pitfalls of increasingly powerful AI tools like ChatGPT.
Human Guided Exploration (HuGE) enables AI agents to learn quickly with some help from humans, even if the humans make mistakes.
With the PockEngine training method, machine-learning models can efficiently and continuously learn from user data on edge devices like smartphones.
Computer vision enables contact-free 3D printing, letting engineers print with high-performance materials they couldn’t use before.
How do powerful generative AI systems like ChatGPT work, and what makes them different from other types of artificial intelligence?
Complimentary approaches — “HighLight” and “Tailors and Swiftiles” — could boost the performance of demanding machine-learning tasks.
The SecureLoop search tool efficiently identifies secure designs for hardware that can boost the performance of complex AI tasks, while requiring less energy.
Researchers coaxed a family of generative AI models to work together to solve multistep robot manipulation problems.
By focusing on causal relationships in genome regulation, a new AI method could help scientists identify new immunotherapy techniques or regenerative therapies.