Natural language processing
Natural language processing

MIT researchers make language models scalable self-learners

The scientists used a natural language-based logical inference dataset to create smaller language models that outperformed much larger counterparts.

3 Questions: Jacob Andreas on large language models

The CSAIL scientist describes natural language processing research through state-of-the-art machine-learning models and investigation of how language can enhance other types of artificial intelligence.

New insights into training dynamics of deep classifiers

MIT researchers uncover the structural properties and dynamics of deep classifiers, offering novel explanations for optimization, generalization, and approximation in deep networks.

Large language models are biased. Can logic help save them?

MIT researchers trained logic-aware language models to reduce harmful stereotypes like gender and racial biases.