Advancing urban tree monitoring with AI-powered digital twins
The Tree-D Fusion system integrates generative AI and genus-conditioned algorithms to create precise simulation-ready models of 600,000 existing urban trees across North America.
The Tree-D Fusion system integrates generative AI and genus-conditioned algorithms to create precise simulation-ready models of 600,000 existing urban trees across North America.
MIT and IBM researchers are creating linkage mechanisms to innovate human-AI kinematic engineering.
By sidestepping the need for costly interventions, a new method could potentially reveal gene regulatory programs, paving the way for targeted treatments.
Researchers show that even the best-performing large language models don’t form a true model of the world and its rules, and can thus fail unexpectedly on similar tasks.
Researchers in the MIT Initiative on Combatting Systemic Racism are building an open data repository to advance research on racial inequity in domains like policing, housing, and health care.
Associate Professor Julian Shun develops high-performance algorithms and frameworks for large-scale graph processing.
MIT CSAIL researchers created an AI-powered method for low-discrepancy sampling, which uniformly distributes data points to boost simulation accuracy.
New dataset of “illusory” faces reveals differences between human and algorithmic face detection, links to animal face recognition, and a formula predicting where people most often perceive faces.
A new method called Clio enables robots to quickly map a scene and identify the items they need to complete a given set of tasks.
The program will invite students to investigate new vistas at the intersection of music, computing, and technology.