Reinforcement learning can be understood by using the concepts of agents, environments, states, actions and rewards. This is an area of machine learning; where there's no answer key, but RL agent still has to decide how to act to perform its task. The agent is inspired by behaviourist psychology who decide how and what actions will taken in an environment to maximize some notion of cumulative reward.
The post Reinforcement Learning – Reward for Learning appeared first on Vinod Sharma's Blog.