Fast reinforcement learning through the composition of behaviours
Fast reinforcement learning through the composition of behaviours

Fast reinforcement learning through the composition of behaviours

Imagine if you had to learn how to chop, peel and stir all over again every time you wanted to learn a new recipe. In many machine learning systems, agents often have to learn entirely from scratch when faced with new challenges. It’s clear, however, that people learn more efficiently than this: they can combine abilities previously learned. In the same way that a finite dictionary of words can be reassembled into sentences of near infinite meanings, people repurpose and re-combine skills they already possess in order to tackle novel challenges.