Szymon Sidor
Szymon Sidor

Competitive Self-Play

We’ve found that self-play allows simulated AIs to discover physical skills like tackling, ducking, faking, kicking, catching, and diving for the ball, without explicitly designing an environment with these skills in mind. Self-play ensures that the environment is always the right difficulty for an AI to improve. Taken alongside our

Competitive Self-Play

We’ve found that self-play allows simulated AIs to discover physical skills like tackling, ducking, faking, kicking, catching, and diving for the ball, without explicitly designing an environment with these skills in mind. Self-play ensures that the environment is always the right difficulty for an AI to improve. Taken alongside our

Better Exploration with Parameter Noise

We’ve found that adding adaptive noise to the parameters of reinforcement learning algorithms frequently boosts performance. This exploration method is simple to implement and very rarely decreases performance, so it’s worth trying on any problem.

Action Space Noise Parameter Space Noise

*Parameter noise helps algorithms more

Better Exploration with Parameter Noise

We’ve found that adding adaptive noise to the parameters of reinforcement learning algorithms frequently boosts performance. This exploration method is simple to implement and very rarely decreases performance, so it’s worth trying on any problem.

Action Space Noise Parameter Space Noise

Parameter