Durk Kingma
Durk Kingma

Glow: Better Reversible Generative Models

We introduce Glow, a reversible generative model which uses invertible 1×1 convolutions. It extends previous work on reversible generative models and simplifies the architecture. Our model can generate realistic high resolution images, supports efficient sampling, and discovers features that can be used to manipulate attributes of data. We’re releasing code

Requests for Research 2.0

We’re releasing a new batch of seven unsolved problems which have come up in the course of our research at OpenAI. Like our original Requests for Research (which resulted in several papers), we expect these problems to be a fun and meaningful way for new people to enter the field,

Block-Sparse GPU Kernels

We’re releasing highly-optimized GPU kernels for an underexplored class of neural network architectures: networks with block-sparse weights. Depending on the chosen sparsity, these kernels can run orders of magnitude faster than cuBLAS or cuSPARSE. We’ve used them to attain state-of-the-art results in text sentiment analysis and generative modeling of

Block-Sparse GPU Kernels

We’re releasing highly-optimized GPU kernels for an underexplored class of neural network architectures: networks with block-sparse weights. Depending on the chosen sparsity, these kernels can run orders of magnitude faster than cuBLAS or cuSPARSE. We’ve used them to attain state-of-the-art results in text sentiment analysis and generative modeling of