<span class="vcard">OpenAI</span>
OpenAI

Preparing for Malicious Uses of AI

We’ve co-authored a paper that forecasts how malicious actors could misuse AI technology, and potential ways we can prevent and mitigate these threats. This paper is the outcome of almost a year of sustained work with our colleagues at the Future of Humanity Institute, the Centre for the Study of

Interpretable Machine Learning through Teaching

We’ve designed a method that encourages AIs to teach each other with examples that also make sense to humans. Our approach automatically selects the most informative examples to teach a concept — for instance, the best images to describe the concept of dogs — and experimentally we found our approach to be

Discovering Types for Entity Disambiguation

We’ve built a system for automatically figuring out which object is meant by a word by having a neural network decide if the word belongs to each of about 100 automatically-discovered “types” (non-exclusive categories). For example, given a sentence like “the prey saw the jaguar cross the

Requests for Research 2.0

We’re releasing a new batch of seven unsolved problems which have come up in the course of our research at OpenAI. Like our original Requests for Research (which resulted in several papers), we expect these problems to be a fun and meaningful way for new people to enter the field,

Scaling Kubernetes to 2,500 Nodes

We’ve been running Kubernetes for deep learning research for over two years. While our largest-scale workloads manage bare cloud VMs directly, Kubernetes provides a fast iteration cycle, reasonable scalability, and a lack of boilerplate which makes it ideal for most of our experiments. We now operate several Kubernetes clusters (some

Block-Sparse GPU Kernels

We’re releasing highly-optimized GPU kernels for an underexplored class of neural network architectures: networks with block-sparse weights. Depending on the chosen sparsity, these kernels can run orders of magnitude faster than cuBLAS or cuSPARSE. We’ve used them to attain state-of-the-art results in text sentiment analysis and generative modeling of

Block-Sparse GPU Kernels

We’re releasing highly-optimized GPU kernels for an underexplored class of neural network architectures: networks with block-sparse weights. Depending on the chosen sparsity, these kernels can run orders of magnitude faster than cuBLAS or cuSPARSE. We’ve used them to attain state-of-the-art results in text sentiment analysis and generative modeling of

Learning a Hierarchy

We’ve developed a hierarchical reinforcement learning algorithm that learns high-level actions useful for solving a range of tasks, allowing fast solving of tasks requiring thousands of timesteps. Our algorithm, when applied to a set of navigation problems, discovers a set of high-level actions for walking and crawling in different directions,

Learning a Hierarchy

We’ve developed a hierarchical reinforcement learning algorithm that learns high-level actions useful for solving a range of tasks, allowing fast solving of tasks requiring thousands of timesteps. Our algorithm, when applied to a set of navigation problems, discovers a set of high-level actions for walking and crawling in different directions,

Generalizing from Simulation

Our latest robotics techniques allow robot controllers, trained entirely in simulation and deployed on physical robots, to react to unplanned changes in the environment as they solve simple tasks. That is, we’ve used these techniques to build closed-loop systems rather than open-loop ones as before. The simulator need not match